Jean-Yves LeBrazidec, Philip J. Kocienski,* Joseph D. Connolly and Kenneth W. Muir

Department of Chemistry, Glasgow University, Glasgow, UK G12 8QQ

Three successive reactions of a dimethoxy arene with allylic cation equivalents were used to convert 2,3-dimethoxy-4-methyl-1-iodobenzene to the hexahydro-1*H*-phenalene system of the potent marine antiinflammatory pseudo-pterosins G–J.

The pseudopterosins are a group of 12 diterpene glycosides of the sea whip *Pseudopterogorgia elisabethae* which inhibit leukotriene synthesis and therefore are of potential use as antiinflammatory agents.¹ The family can be divided into three groups having diastereoisomeric hexahydro-1*H*-phenalene ring systems. The stereochemical relationships are exemplified by pseudopterosins A (1a) and L (1b) which have enantiomeric

hexahydro-1*H*-phenalene systems whereas pseudopterosin G (1c) differs from A only at C6. Helioporin E (2) a bioactive metabolite isolated from the blue coral *Heliopora coerulea*, is stereochemically related to pseudopterosin G.² Most of the synthetic effort to date³ has been invested in the pseudopterosin A ring system 1a and we recently reported⁴ a synthesis of the aglycone corresponding to 1b. An approach to a pseudopterosin G model using chiral η^6 -arene-Cr(CO)₃ complexes appeared in 1994.^{5,6} We now report a synthesis of the hexahydro-1*H*-phenalene **3** which bears an enantiomeric relationship to pseudopterosin G and helioporin E. Our approach features three stereoselective arene alkylations involving allylic cation equivalents as electrophiles.

The first stereogenic centre at C6 (1*H*-phenalene numbering) was established by regio- and enantiofacially-selective addition of the zinc-cuprate reagent **6** to the homochiral (E)-[(2,3,4- η^3)-1-ethoxy-1-oxopent-3-enyl]tricarbonyliron(1-) tetrafluoro-

borate complex 7⁷ to give the adduct **8** in 60% yield and er $\geq 95:5$ according to ¹H NMR spectroscopy in the presence of europium tris[3-heptafluoropropylhydroxymethylene)-(+)camphorate [Eu(hfc)₃] (Scheme 1). *Trans* addition of the nucleophile to η^3 -allyl complex 7 leading to the (6*S*) stereochemistry in **8** was expected from the extensive studies of Enders and Jackson, respectively.^{8,9} Conjugate reduction of the enoate ester in **8** using magnesium in methanol followed by reduction of the ester function with DIBAL-H returned the saturated aldehyde **9** in good yield. Addition of (trimethylsilyl)ethynylmagnesium bromide then led to an inseparable 1:1 mixture of diastereoisomeric propargylic alcohols **10**.

For the construction of the second ring we employed an intramolecular Nicholas reaction¹⁰ involving electrophilic aromatic substitution using a cobalt-stabilised propargylic cation equivalent as an electrophile. We prepared the complex 11 in the usual way and reacted it with BF3. OEt2 at -20 °C to induce cation formation and ring closure. After decomplexation with ferric nitrate, tetrahydronaphthalene 12 was obtained in 65% yield. NMR spectroscopy revealed good diastereoselectivity (dr = 95:5) but confirmation of the stereochemistry had to await the final step. Hydroboration-oxidation of the silvlalkyne gave a crystalline carboxylic acid (mp 78-80 °C) which was esterified using tetramethylguanidine and iodomethane to give the methyl ester 13 in 95% yield. The next step in the sequence, the α -alkylation of ester 13 using LDA and iodomethane, proceeded with good diastereocontrol giving the ester $14 \mbox{ in } 85\%$ yield (dr = 10:1). The toluene-*p*-sulfonate ester 15, prepared in two standard steps, was obtained as a single diastereoisomer after crystallisation from diethyl ether-pentane (mp 102-104 °C).

For the creation of the third ring and the introduction of the stereogenic centre at C-1, we returned to the Lewis acid mediated electrophilic cyclisation of an allylic sulfone¹¹ which had been a prominent feature in our earlier synthesis of pseudopterosin K aglycone.⁴ Thus treatment of the diastereoisomeric mixture of sulfones **16** with ethylaluminium dichloride gave **3** with good stereoselectivity (dr $\ge 10:1$) in 90% yield. The structure and relative stereochemistry of the product (Fig. 1) was established by X-ray analysis† of a pure sample obtained by crystallisation from MeOH (mp 107–109 °C). Solid **3** contains

[†] Crystal structure of **3**. C₂₂H₃₂O₂, M = 328.48, triclinic, space group, P - 1, a = 10.173(1), b = 10.400(1), c = 18.532(1) Å, a = 93.98(1), $\beta = 93.70(1)$, $\gamma = 91.70(1)^\circ$, V = 1950.7(2) Å³, Z = 4, $D_{calc} = 1.118$ Mg m⁻³, $\mu = 0.069$ mm⁻¹, F(000) = 720. Intensities of 12 825 reflections with $2 \le \theta$ (Mo-K α) $\le 30^\circ$ were measured at 20 °C on an Enraf-Nonius CAD4 diffractometer with Mo-K α X-rays, $\lambda = 0.710$ 73 Å. Refinement on F^2 of 447 parameters using all 11 370 unique reflections $[R_{int} = 0.011]$ converged at $R_1 = 0.054$, $wR_2 = 0.16$ for 8345 reflections with $1 > 2\sigma(I)$ and $R_1 = 0.076$, $wR_2 = 0.17$ for all data, $|\Delta \rho| < 0.41$ e Å⁻³. Full crystallographic details, excluding structure factor tables, have been deposited at the Cambridge Crystallographic Data Centre (CCDC). For details of the deposition scheme, see 'Instructions for Authors', *J. Chem. Soc., Perkin Trans. I*, available *via* the RSC Web page (http:// www.rsc.org/authors). Any request to the CCDC for this material should quote the full literature citation and the reference number 207/235.

Scheme 1 Reagents and Conditions:

- (a) BuLi, THF–Et₂O (5:1), $-100 \,^{\circ}$ C; (b) ZnBr₂, $-100 \longrightarrow -70 \,^{\circ}$ C (c) CuCN·2LiCl, $-70 \,^{\circ}$ C; (d) 7, $-70 \,^{\circ}$ C $\longrightarrow 0 \,^{\circ}$ C A 60%
- 90%
- Mg (6 equiv.), MeOH, 5 °C, 3 h В
- С 87% DIBALH (1.05 equiv.), CH₂Cl₂, -80 °C, 1 h
- D 89% Me₃SiC=C-MgBr (1.3 equiv.), 0 °C, 15 min
- Е 86% (a) Co₂(CO)₈ (1.3 equiv.), CH₂Cl₂, 20 °C, 1 h;
 - (b) $BF_3 \cdot OEt_2$ (2 equiv.), $-20 \circ C$, 3 h;
 - J (c) Fe(NO₃)₃·9H₂O (10 equiv.), MeOH, 20 °C, 3 h

Fig. 1 A view of one of the two independent molecules of 3 showing the atom numbering scheme and 20% probability ellipsoids

two crystallographically independent but structurally indistinguishable molecules. The saturated six-membered rings

- 65% (a) (C₆H₁₁)₂BH (2 equiv.), THF, 5 °C, 1 h;
- (b) H₂O₂, NaOH, MeOH, 30–50 °C, 1 h
- G 95% tetramethylguanidine (2 equiv.), MeI, PhMe, 20 °C Н
 - 85% (a) LDA (1.5 equiv.), THF, -40 °C; (b) MeI (2 equiv.)
- I 92% LiAlH₄ (0.75 equiv.), THF, 0 °C J
 - TsCl (1.5 equiv.), DMAP, NEt₃, CH₂Cl₂ 86%
- 16 (2 equiv.), THF, 3 h K 75%

F

EtAlCl₂ (2 equiv.), CH₂Cl₂, -30 °C, 3 h L 90%

adopt similar distorted half-chair conformations, with axial substitution at C1 and C6 and an equatorial methyl group at C3. A comparison of the high field ¹H and ¹³C NMR data for compound 3 (Table 1) with those reported ^{1,2} for pseudopterosin G (1c) and its aglycone 4 are very similar with the exception of the signals for carbons 3 and 4. Compound 3 gives signals at δ 29.7 (C-3) and 22.6 (C-4) whereas the corresponding signals for pseudopterosin G appear at δ 34.2 and 27.6 and for the aglycone at δ 34.1 and 27.8 respectively. These data suggest that 1c and 4 adopt a conformation different from 3 or their stereochemistry may need revision.

In conclusion, we have prepared the enantiomeric hexahydro-1H-phenalene core with the relative configuration ascribed to pseudopterosin G in just 12 steps (4.5% overall) from readily available starting materials. Noteworthy features of our approach are (a) creation of the (6S) stereochemistry by regioand enantiofacially-selective nucleophilic addition of an arylmetal to an η^3 -allyl cationic complex and (b) control of the 3 subsequent stereogenic centres by stereorelay [*i.e.*, $(6S) \Rightarrow (13S)$ \Rightarrow (3R) \Rightarrow (1S)]. A fortuitous bonus was the stereoconvergence observed in the two cyclisation reactions (11- $\rightarrow 12$ and $17 \longrightarrow 3$) thereby removing the need to control the stereochemistry of the precursors 11 and 17.

Position	$\delta_{\mathrm{C}}{}^{b,c}$	$\delta_{\mathrm{H}}{}^{b,c}$
1	36.2	3.63 (br d, <i>J</i> 9.3)
2	41.0	<i>ca.</i> 1.7 (m)
3	29.7	<i>ca.</i> 1.7 (m)
4	22.6	1.97 (dq, J 12.6, 3.3) eq
5	31.0	1.45 (dq, J 2.7, 12.6) ax 1.84 (ddt, J 5.8, 2.8, 13.2) ax 1.75 (dm, J 13.2) eq
6	28.3	3.24 (quintet, J 6.5)
7	149.1	
8	149.3	
9	128.5 ^d	
10	134.2 ^{<i>d</i>}	
11	131.5	
12	133.3	
13	46.3	2.05 (m)
14	131.0	5.13 (br d, J 9.3)
15	129.3	
16	25.8	1.68 (br s)
17	17.8	1.74 (br s)
18	20.9	1.01 (br d, J 5.2)
19	24.0	1.20 (d, J 7.2)
20	11.0	2.04 (br s)
7-OMe	60.5	3.88
8-OMe	60.5	3.77

^a Recorded in CDCl₃ on a Bruker 400 MHz spectrometer. ^b Chemical shifts are reported in ppm relative to residual \hat{CHCl}_3 at δ 7.27 (¹H) and δ 77.2 (¹³C) with coupling constants (*J*) quoted in Hz. ^c Assignments are based on COSY, NOE, HMBC and HMQC experiments. ^d These assignments may be reversed.

Acknowledgements

We thank Glaxo Wellcome for financial support and Dr Krzysztof Jarowicki for extensive NMR experiments.

References

- 1 V. Roussis, Z. Wu, W. Fenical, S. A. Strobel, G. D. Van Duyne and J. Clardy, J. Org. Chem., 1990, 55, 4916.
- 2 J. Tanaka, N. Ogawa, J. Liang, T. Higa and D. G. Gravalos, Tetrahedron, 1993, 49, 811.
- 3 A. Majdalani and H.-G. Schmalz, Synlett, 1997, 1303 and references therein.
- 4 S. Gill, P. Kocienski, A. Kohler, A. Pontiroli and L. Qun, Chem. Commun., 1996, 1743.
- 5 H.-G. Schmalz, A. Schwarz and G. Dürner, Tetrahedron Lett., 1994, 37, 6861.
- 6 M. Uemura, H. Nishimura, T. Minami and Y. Hayashi, J. Am. Chem. Soc., 1991, 113, 5402.
- 7 D. Enders, U. Frank, P. Fey, B. Jandeleit and B. B. Lohray, J. Organomet. Chem., 1996, 519, 147.
- 8 D. Enders, S. von Berg and B. Jandeleit, Synlett, 1996, 18.
- 9 M. J. Dunn, R. F. W. Jackson and G. R. Stephenson, *Synlett*, 1992, 905.
- 10 A. J. M. Caffyn and K. M. Nicholas, Comprehensive Organometallic Chemistry II, ed. E. W. Abel, F. G. A. Stone and G. Wilkinson, Pergamon, Oxford, 1995, vol. 12, p. 685.
- 11 B. M. Trost and M. Reza Ghadiri, J. Am. Chem. Soc., 1986, 108, 1098.

Paper 8/03888K Received 22nd May 1998 Accepted 25th June 1998